今天给各位分享显卡说明的知识,其中也会对显卡说明书丢了进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
显卡相关知识介绍
对于显卡,不少人还是对它不太了解的。下面我就为大家介绍一下关于显卡的相关知识吧,欢迎大家参考和学习。
据统计,人们接触的信息80%以上是视觉信息,一幕幕动人的场景,一幅幅美丽的画面,勾画出了趣味横生的生活百态,描绘出了绚丽多姿的七彩世界。
也许您没注意,小小的电脑荧光屏,能够展现出阳光明媚风和日丽的春天、骄阳似火绿树成荫的盛夏、天高气爽硕果累累的金秋和天寒地冻白雪皑皑的隆冬。更有高科技的电脑制作,把我们带到了神奇美妙三维世界。
在一台电脑里, 显示器 是电脑和用户交互的一个关键的图文界面,五颜六色的画面要怎么精彩就可以怎么精彩,要多么动人就可以多么动人。不过这都需要显示卡给显示器发送显示信号、并控制显示器显示出绚丽的色彩,所以显示卡和显示器都是电脑显示不可缺少的部件。
显示卡在多媒体技术和图形处理技术中越来越重要,一块好的显示卡可以比主板还贵就说明了它的比重。目前“一板一卡”的流行配套 方法 也表明了电脑设计者们对显示卡的重视。显示技术也不断在更新。
有关图形显示技术的术语
对图形专业术语了解得多一些,可以帮助我们更好地选择适合自己的图形显示卡,下面是一些在谈及显示技术时常用到的名词术语。
图形加速卡中的述语
◇颜色深度:用来描述图形卡一次能够显示多少种颜色。8位颜色深度可以显示256种颜色;16位颜色深度可以显示65536种颜色;24位颜色深度可以显示16M种颜色。
◇双口存储器:是一种带有两个端口的RAM,图形数据可以直接从一个端口进入而从另一个端口输出,从而从速度上获得额外的提升。VRAM和WRAM都是双口存储器。
◇EDO VRAM:是一种更快速的VRAM
◇RAMDAC:数模变换器,它是用来将PC能够处理的数字信息转变成显示器可以用于显示的模拟信号。它的变换速度越快,你就可以得到更高的屏幕刷新率。
◇刷新率:屏幕每秒钟重绘的次数。屏幕刷新频率低于55Hz将会有闪烁感,容易使人的眼睛产生疲劳。
◇SGRAM:一种同步存储器,理论上可以使图形卡处理速度加倍。SDRAM和SGRAM,它们基本上是一样的,只是SGRAM具有一些图形增强方面的特性。
◇视频插值:当你要放大一个视窗口时,除非你的图形卡使用了插值处理,否则图象边缘会变成锯齿状。一般都希望在X轴和Y轴两个方向都能进行插值。
3D软件术语
◇API:(应用程序编程接口)API是用来使3D程序与3D图形加速卡进行通讯的软件接口。为了使3D图形卡能用来加速3D游戏的执行,游戏的开发应使用图形卡能够支持的API。
◇Direct3D:Microsoft的Direct3D原希望成为一种所有的3D软件和3D图形卡都支持的标准。然而,由于Direct3D在性能方面不是尽如人意,所以游戏开发商也经常使用那些针对特定3D图形卡的API。
◇OpenGL:它是一种专业的API,在高端CAD软件中被广泛使用。软件开发商正在考虑使用OpenGL,而不是Direct3D来作为软件开发的API。
3D图像技术术语
◇Alpha混合:是一种颜色混合方法,它可以将两个重叠的纹理图像进行混合,使其中的一个看起来是透明的。例如在一面绿色墙面上映出的激光束光焰。激光束的图像被一个黑盒子所包围,为了使激光束看起来更真实,黑色需要去掉,墙面的绿色应该与光束的颜色进行混合。
◇滤波:消除3D图像中的色块感,使图像看起来更平滑。
◇雾化:当3D对象移动时,将3D对象与固定的颜色进行混合,使它看起来像正在逐渐消失,或者正在从雾里,或黑暗中出现。
◇MIP映射:以几种不同的尺寸大小来保存一幅纹理图形,以适合对象的不同尺寸。这一点对显示正在移动的纹理贴图对象很有帮助。若没有MIP映射,当3D芯片压缩或者扩大纹理图形来适应对象尺寸大小的变化时,会在纹理贴图对象的边缘有闪烁不定的感觉。有了MIP映射,就用不着太多的压缩处理。图形加速芯片将根据对象的大小来快速地选择采用更大或更小的纹理图形。
◇透视校正:在不同角度和距离的情况下都能使纹理贴图3D对象看起来更真实。
◇纹理映射:将一个位图贴在3D对象表面上可以使对象看起来更真实,例如在Microsoft的Monster Truck Madness游戏中,当你在场景中移动时,图形卡会不断地将沙地位图贴在沙丘上,以使沙丘看起来更真实。
AGP(Accelerated Graphics Port)图形加速接口标准
AGP是新一代显示卡接口技术,可大幅提高3D图形的显示能力。目前,各大显示卡厂家已有大量AGP显示卡产品推出,带AGP接口的主板也已面市。AGP 3D显示卡正大量涌入显示卡市场。
虽然现在PC的图形处理能力越来越强,但要完成细致的大型3D图形描绘,PC平台的性能仍然有限,为了让PC的3D应用能力能同图形工作站一较高低,Intel公司开发了AGP。推出AGP的主要目的就是要大幅提高主流PC的图形尤其是3D图形的显示能力。配合Pentium II的DIB(双重独立总线)技术以及MMX技术,AGP将会成为新一代的商用电脑标准。
什么是AGP
1.PCI总线在3D应用中的局限
AGP主要针对现在的PCI显示卡在处理动画和3D绘图时出现的数据传输瓶颈情况,随着处理器速度越来越快,瓶颈情况还会更加严重,特别是在3D图像的情况下更明显。
在3D图形描绘中,储存在PCI显示卡上显示内存中的不仅有影像数据,还有Z轴的距离数据,TextureData(纹理数据)及Alpha变换数据等。储存纹理数据的显示内存容量越多越好。从整个系统来看,增加显示内存还不如增加主内存划算,而且把纹理数据储存在主内存比储存在显示内存更可有效利用内存。也就是说,当应用程序结束后,它所占用的主内存空间又可恢复,纹理数据并不永远占用主内存的空间。
遗憾的是,当纹理数据从显示内存移到主内存时,数据传输的瓶颈也从显示卡上的内存总线转移到了PCI总线上,而纹理数据传输量就将超过100MB/sec,现有的PCI总线远远不能满足要求,因而就需像AGP这样可连结主内存与显示卡的新接口。
2.AGP的结构
AGP的目的是以相对低价格来达到高性能3D图形的描绘功能,为此Intel对PCI再扩充了三项主要的规格而定义了AGP:
(1)数据读写操作的管道处理;
(2)133MHz的数据传输周期;
(3)地址信号与数据信号分离。
AGP的原理是把显示芯片独立设置在系统总线上面,把显示芯片直接同芯片组的内存控制器电路相连。在这种“点对点”的连接中,还利用了时钟信号的两边沿(即上升沿和下降沿)作数据传输,所以速度成倍提高。也由于采用点对点连接方式,一个系统只能有一个AGP,所以,AGP不会取代PCI总线。第一代AGP以66MHz的速度传送数据,是PCI总线的一倍;第二代AGP将可达133MHz,足以满足用软件播放DVD光盘的要求。数据传输速度最高可达533MB/sec,约为目前PCI的4倍。PCI同AGP比较如下表所示:
PCI同AGP的比较
PCI总线 AGP
传输方式 同步 同步
内存优先存取 不支持支持
数据线位宽32位 32位
总线时钟 33MHz 66MHz
最高数据传输速度 133MB/sec 533MB/sec
可连接扩展卡数最多有5个1个
信号线数 4965
3D图形的成图处理需高显示芯片与显示内存间的数据传输速度。目前,大多数显示卡都采用较快速的显示内存,但这样会提高显示卡的成本,折衷的方法之一就是将纹理数据从显示内存移到主内存,因此可减少显示内存的容量,从而降低显示卡的成本。
AGP不只用于3D图形,对2D图形也同样有效。由于显示卡通过AGP、芯片组与主内存相连,提高了显示芯片与主内存间的数据传输速度,让原需存入显示内存的纹理数据,现可直接存入主内存,这样可提高主内存的内存总线使用效率,也提高了画面的更新速度及ZBuffering(Z缓冲)等数据的传输速度,而且还减轻了PCI总线的负载,有利于 其它 PCI设备充分发挥性能。要知道,在PC98规格中,ISA总线已被取消,ISA设备终将被淘汰,所以,把占用了PCI总线大量带宽的显示卡移到AGP上是非常必要的步骤。
AGP在影像数据的传输效果方面也有不错的表现。当MPEG2影像数据经CPU解压时,需通过总线将影像数据写入显示内存,已解码全画面的MPG2影像数据,需以15~20MB/sec的速度传输。虽然PCI总线的实际数据传输速度为27~33MB/sec,但数据的传输如果搭配不当,则画面恐怕将很不流畅。
目前,AGP尚留有两项限制其发展的因素,其一是主内存的数据传输速度。支持AGP的显示芯片在作3D图形描绘时需对主内存进行存取操作,因此将增加主内存的内存总线流量,一般需要有800MB/sec以上的速度。但目前主内存的数据传输速度大多在200~300MB/sec,以这样的速度,即使利用了AGP也无法作细致的3D图形描绘。为了达到800MB/sec的数据传输速度就需有高速的DRAM,如100MHz以上的SDRAM、RDRAM或其它如SGRAM、VRAM等。AGP的另一个问题是显示卡的兼容性。
前景展望
AGP是开放的规格,厂家不需付出专利费。目前,如3Dfx、3Dlabs、ATI、CirrusLogic、Rendition、S3、Trident等3D显示卡厂商都已表明支持AGP,而且已有部分原型产品推出。Intel不仅已与微软签约,还鼓励多家显示卡制造厂家采用AGP。目前一些高性能的PC已率先采用。因此,AGP可在很短的时间内普及,Intel公司认为,到2000年,90%的PC将配置AGP显示卡。
为发挥AGP的优点,微软已在其新版Windows 98及Windows NT 5.0中支持AGP功能,并且通过DirectDraw API为软件厂商提供编程接口。
配有AGP接口的主板已经面市,如精英、华硕、中凌等公司的最新主板,采用支持Pentium II的Intel 440LX、440BX芯片组,而VIA等其它芯片组厂商也推出了支持AGP的用于Pentium级MMX CPU的Socket 7主板的芯片组。
AGP接口的显示卡一律都是3D显示卡,采用SDRAM或者RDRAM等高速显示内存,Trident的3D Image 985和875都支持AGP并具有TVOut功能。
从原型产品所看,采用AGP并不会大幅增加显示卡的成本,但功能却强大得多,例如Trident的3D Image 985,除了芯片本身外,还有一颗MPEG2解压芯片用以播放DVD光盘,完全符合未来的多媒体电脑需要。
关于AGP技术的讨论
1.AGP是提高图形/视频处理速度的“特效药”
上面已经谈到,在三维图形显示中,高速化的瓶颈是“图形纹理(Texture)处理”,它需要以100Mbps(分辨率为640×480点)~150Mbps(分辨率为800×600点)的传输速率传送大量的位图(Bitmap)数据,而目前所有的PCI总线的传输速率太低,不能满足传输速度的要求。
在PC机中,三维图形处理大体可分为“几何变换”和“绘制着色”处理。这两种处理都由CPU承担,CPU的负荷过重。为此,采用三维图形芯片代替CPU来处理处理量很大的“绘制着色“。为了降低图形卡的成本,必须设法减小图形存储器的容量,于是,把纹理数据存储在主存上。但在目前的系统中,主存和图形存储器间是用PCI总线连接的,它的最大传输速率为133Mbps,而HDD、LAN、声卡等送往主存的数据都要通过PCI总线,而实际的传送速率远低于133Mbps。为此,推出了图形数据专用接口AGP。
我们已经看到,AGP把主存和图形存储器直接连结起来。AGP总线宽为32位,时钟频率66MHz,能以133MHz工作,最高传输速率可高达533MBps。AGP的首要目的是将纹理数据置于主存,以减少图形存储器的容量,从而可以生产廉价、高性能的图形卡。AGP不仅用于三维图像处理,而且用于动画的再生处理。MPEG2动画数据的解压处理需要约30Mbps的传输速率,PCI总线难以胜任,而APG则游刃有余。
在数据传输中采用AGP具有非凡的意义。现在的PCI总线是传输视频和3D图形数据的一个瓶颈。AGP的传输速率为533Mbps,是PCI的4倍。它很有希望成为消除这一瓶颈的新一代总线。
PC机CPU芯片的霸主Intel公司在“Graphics Controller’97”中宣称,从1997年后将作为标准配置在PC中开始装备以下三种装置:与街头游戏机旗鼓相当的3D图形绘图装置;用软件再生收录在DVD-ROM中的MPEG2视频装置;符合H.320/H.324技术标准(ITU-T:国际电气联合会的电气通信标准化部门)的电视会议装置,并主张用AGP和MMX来实现上述三种装置。与此相应,与X86兼容的芯片生产厂商纷纷表示支持MMX,图形控制芯片生产厂商也都表示要适应AGP。
MMX是处理器内部的问题,而AGP会改变PC的体系结构。为了适应AGP,必须重新设计图形控制芯片和内存/PCI控制芯片组。
的确,AGP是提高3D图形性能的“灵丹妙药”。但是,它必须设法在提高性能的同时降低成本,以便能配置到普及价位的PC中。
遗憾的是,AGP牺牲了通用性和扩展性。原因是在AGP上只能连接3D图形控制芯片。PC机虽然配置了3D装置所附带的图形、MPEG2解压和视频捕获等多媒体插板,但AGP的“受益者”却只有图形插板。因此,还不敢断言AGP“是新一代总线的上佳选择”。
2.SGI“独辟蹊径”
SGI公司提出了取代AGP的另一种方案。它于1996年11月推出了采用先进的UMA(Unified Memory Architecture,统一内存结构)的O2图形工作站。O2图形工作站是业界第一个采用统一内存结构的系统,它依其64位MIPS RISC微处理器,将三维图形图像处理、视频、音频和压缩能力集成在一起,从而在低价位上得到了超级性能。它冲破了传统的基于总线的数据传输障碍,使得CPU图形图像处理和I/O之间均能以2.1Gbps的速度直接访问内存,并快速的传递信息。
O2图形工作站的着眼点是尽可能降低成本,提高性能。采用UMA技术,使图形控制器、视频处理器等4种外围芯片及主处理器,可以共用主内存(SDRAM)。一般情况下,若采用UMA装置,当多个外设的访问申请都集中于主存时,则会导致性能下降。因此,在O2中,用宽256位、时钟频率为66MHz的超高速总线(最大传输速度达2.1Gbps)连接主内存,以抑制性能下降。
UMA在3D图形绘制、视频再生、视频捕获等所有多媒体数据操作方面,发挥着积极的作用。例如,3D图形的性能很大程度上取决于内存容量和内存存取性能,原因是处理图形要频繁地存取Z缓冲器和纹理数据区。据Microsoft测算,在640×480像素的流行的彩色表示模式中,使用采用二进制滤波方式的纹理影射和24位的Z缓冲器绘制3D目标时,需要大约30Mbps的内存带宽。另外,这时仅储存Z缓冲器和纹理数据,就需要4MB的内存。如使用UMA装置,图形控制芯片把主内存作为帧缓冲器使用,那么可以不使用专用的帧缓冲器,在空主存区内还可最大限度的确保纹理数据区,这样,可望进一步提高3D图形的性能。
UMA在视频捕获中效果尤其明显。用摄象机来获取视频,然后将其作为3D目标的纹理数据贴上,就可实时地再生视频图像。由于使用UMA机构,把捕获的数据送入主存,只要将其内存指针作为捕获数据的指针传递给图形控制芯片即可。
3.AGP并非总线
与UMA的考虑方法一样,只不过AGP仅是一个能使外围设备高速存取内存的技术标准。具体的说,是把3D图形芯片与内存/PCI芯片相连接,3D图形芯片可以将主存作为帧缓冲器,实现高速存取。严格地说,AGP不是总线,它仅是考虑一对一(点对点)连接的“端口”。
因此,AGP主要是针对绘制3D图形而言。AGP的数据总线宽为32位,它有66MHz和133MHz两种工作频率,最高数据传输速率分别为266Mbps和533Mbps。与AGP对应的内存/PCI控制芯片组中备有被称之为“GART(Graphics Address Remapping Table)”的表,3D图形芯片以4KB为单位,可自由地将主存映射到本身的地址空间。映射区在主存上可以是不连续的,但必须以4KB为单位。
另外,AGP对于MPEG2视频的再生具有积极作用。但这仅限于不用专用解压硬件而用处理器来解压MPEG2视频数据的情况。用处理器解压时,可在画面显示时,经AGP将解压后的视频数据传送给视频存储器。但是,若使用专用的MPEG2解压卡,解压后的数据则不经AGP,而是必须用PCI总线进行传送。在MPEG2规格中,主要是使用7200×576像素、30帧/秒的视频。理论上,传送解压后的数据需要36Mbps的数据传送能力。PCI的实际传送速率为30~40Mbps。若用PCI总线进行传送,画面会发生抖动。Intel推荐用主处理器来解压MPEG2视频。在AGP中,不再考虑使用MPEG解压卡。
视频捕获卡不能连接到AGP卡上,也不能像O2那样只要把捕获数据的内存指针传递给图形控制芯片就可将其数据用于纹理。
4.AGP具有浓厚的“补丁”色彩
很多PC图形界的专家预言:“把O2的体系结构应用在PC中,恐怕是两三年以后的事情。”例如,有关机构已经制定出了宽64位、时钟频率为66MHz的PCI总线技术标准,它的理论数据传输速度与AGP一样,是533Mbps。另外,美国的图形标准化协会VESA(Video Electronics Stand ards Association)也已筹划制定所有接到PCI总线的外部设备共享主存的UMA机构的技术标准。如果将UMA机构装到宽64位、时钟频率为66MHz的PCI总线上,其结构就变成了使所有多媒体机构顺畅工作的O2图形工作站。
可是,SCSI控制芯片、Modem和串/并行控制器等外部设备,并不需要高于目前PCI总线的数据传输速度,但它们必须工作在66MHz的时钟频率下。这样,制造各种这类控制芯片不仅提高了成本,而且调试复杂。但是,若在今后1~2年之内,出台替代AGP的新装置,也必须购买新机器,这样必然会妨碍PC的普及。
5.AGP是当前切实可行的解决策略
事实上,AGP是目前所考虑的实现PC机图形、视频处理功能最现实的解决策略。O2是SGI独家制定且具有高性能、高价位的工作站的技术标准。它和采用多家厂商产品组合而成的PC机大不相同。例如,它把主存接至数据传输速度最高达2.1Gbps的总线上,把绘制3D图形的再生机构和主存控制器综合到一个芯片中等等,这些都是只有在一个封闭的独立厂商才能实现的技术。在组合多家厂商产品的PC机中,要实现完全对应于O2的装置,确实是“勉为其难”。况且,这也与PC机视开放环境为“灵魂“的精神相左。
相反,AGP可以在这样的设计思想下进行开发:使AGP能配置在低价位的PC中,而相应的器件(图形控制芯片)制造简单,成本低。例如,由于AGP只限于连接一个器件(主存/PCI控制芯片组除外),故此,所连接的器件容易开发,在主存/PCI控制芯片组,无须安装用于AGP仲裁的专用电路,可降低成本。实际上,所谓PCI总线是传送大量数据的瓶颈,也仅仅指的是3D图形芯片。
AGP实质上是PCI技术标准的扩充。这也是出于简化开发设计的考虑,使其类似于PCI总线。AGP与PCI总线不同,其地址线和数据线分离(PCI是49根信号,而AGP是65根);可实现“流水线”处理,以提高实际数据传输速率;地址线和数据线分离,没有切换的“开销”,提高了随机访问主存时的性能。
内存/PCI控制芯片组具有“事物处理”队列,用以实现流水线“处理”。图形控制芯片一旦将要求送给主存/PCI控制芯片组,就立刻释放总线。主存/PCI控制芯片组可以把多个申请命令存入队列,按优先权高低依次处理、响应。图形控制芯片在数据的等待时间里,可以受理处理结果,因而,可提高总线的整体使用效率。
6.关于PC机总体结构的 反思
AGP虽然是实现PC机图形视频处理功能的切实可行的解决策略,但它仍是带有浓厚“补丁”色彩的技术标准。AGP究竟能否以与投资相称的“永久性”装置“扎根落户”,还是像过去的VL-Bus那样昙花一现?目前还难以定论。从相反的观点来看,AGP是为普及3D图形的需求而出台的,如果3D图形的需求“萎缩”,它就有可能重蹈VMC(VESE Media Channe)和SFBI(Shared Frame Buppzzer Interconnect)失败的覆辙。
将来多媒体PC机究竟怎么用,目前也无定论。Intel的预测只不过是基于用PC机玩“游戏”和MPEG2视频影像的用户将急剧增长这一判断。更重要的是,PC机应具有能玩“游戏”、玩MPEG2视频、甚至玩视频捕获的性能。由此看来,必将出现新型的应用和服务,一个与现在大不相同的、崭新的多媒体世界将会展现到我们面前。
为了进一步普及PC,开拓巨大的家用PC市场,不应只顾眼前利益,要有长期能用的多媒体总线。时至今日,认真设计一种理想的多媒体PC的总体结构,已迫在眉睫。
显卡是什么??
显卡是个人计算机基础的组成部分之一,将计算机系统需要的显示信息进行转换驱动显示器,并向显示器提供逐行或隔行扫描信号,控制显示器的正确显示,是连接显示器和个人计算机主板的重要组件,是“人机”的重要设备之一,其内置的并行计算能力现阶段也用于深度学习等运算。
显卡的性能参数有哪些
决定显卡性能的参数简单来说有下面几项,总的来说就是显卡核心及显存的各方面参数:
1:显卡核心架构:这是决定一个显卡性能的最基本指标之一,显卡架构决定了显卡的先进与否。
2:显卡核心规模:在确定显卡架构后,核心规模越大,流处理器数量越多,性能在同代显卡中也就越高。
3:显卡核心制程:显卡核心的制程决定了显卡的先进程度,制程越先进说明显卡也就越新,功耗就越低,成本也会更高,目前主流的显卡为16nm、14nm、12nm、8nm、7nm等。
4:显卡核心频率:同核心的情况下,核心频率越高,显卡的性能则越高。
5:显存容量:显存容量越大,显卡核心同时可以加载的渲染资源越多,对性能有一定帮助,目前主流家用显卡显存为2G-24G。
6:显存频率:显存频率与显存类型有关系,如GDDR5、GDDR6、GDDR6X的频率都有一定的差异,核心参数及显存容量一致的情况下,显存频率越高显卡性能越高。
7:显存位宽:显存位宽越高,显卡核心从显存中可以一次性读入的数据量就越大,显存与显示芯片之间交换数据的速度就越快。
详解显卡各项参数
显卡的具体参数一般有显示芯片(芯片代号)、显存容量、显存类型、显存位宽、显存封装、核心频率(boost频率)、显存频率、流处理单元(流处理器)。
1、显示芯片:
显示芯片是显卡的核心芯片,它的性能好坏直接决定了显卡性能的好坏,它的主要任务就是处理系统输入的视频信息并将其进行构建、渲染等工作。
显示主芯片的性能直接决定了显示卡性能的高低。不同的显示芯片,不论从内部结构还是其性能,都存在着差异,而其价格差别也很大。显示芯片在显卡中的地位,就相当于电脑中CPU的地位。
2、核心频率:
显示核心的核心频率在一定程度上反映出核心的运行性能,就像CPU的运行频率一样。我们前边已经说过显卡在核心架构上的差异,而如果在相同核心架构的前提下,核心频率越高的显卡其运行性能就越好
3、显存速度:
我们常见的显卡参数中,还可以看见如DDR3:1.4ns这类参数,这里的DDR3表示的则是显存类型,而后面的1.4ns表示的则为显存速度,显存速度一般以ns(纳秒)为单位,越小表示显存的速度越快,显存的性能越好。
4、显存类型:
显卡上采用的显存类型主要有SDR、DDRSDRAM、DDRSGRAM、DDR2.GDDR2.DDR3.GDDR3.GDDR4.GDDR5。其中,现在主流的已GDDR3和GDDR5为主,不同的显存类型,传输效率都不一样。
5、显存频率:
显存频率是指默认情况下,该显存在显卡上工作时的频率,以MHz(兆赫兹)为单位。显存频率一定程度上反应着该显存的速度。
显存频率与显存时钟周期是相关的,二者成倒数关系,显存的理论工作频率计算公式是:显存理论工作频率(MHz)=1000/显存速度2。
6、显存容量:
这个是现在很多小白最在意的一个参数了,这其实类似于一台主机的内存,其他参数相同的情况下容量一般是越大越好,但比较显卡时不能只注意到显存(很多js会以低性能核心配大显存作为卖点)。
其实现在显存容量除了高端的GTX970之类的玩单机大作之外,显存容量已经不是衡量一个显卡性能的标准的了。
7、显存位宽:
显存位宽是显存在一个时钟周期内所能传送数据的位数,位数越大则瞬间所能传输的数据量越大。
8、显卡带宽:
指图形芯片与显存之间一次可读入的数据传输量,它是决定显卡性能和速度的主要因素,代表显存的数据传输速度,这里说明下。
显卡位宽和显卡带宽是两个不同的概念的,不过两者的关系也联系紧密,在显存频率相当的情况下,显存位宽将决定显存带宽的大小其计算公式为:显存带宽=工作频率×显存位宽/8。
9、流处理单元:
在DX10显卡出来以前,并没有“流处理器”这个说法,在DX10的时代,取消了传统的“像素管线”和“顶点管线”,统一改为流处理器单元,它既可以进行顶点运算也可以进行像素运算。
这样在不同的场景中,显卡就可以动态地分配进行顶点运算和像素运算的流处理器数量,达到资源的充分利用。
10、显存封装:
显存封装类型基本分:TSOP,QFP和BGA三类,现在基本已BGA为主。
11、3DAPI:
这个可以自己去了解下,个人电脑中主要应用的3DAPI有:DirectX和OpenGLOpenGL主要用于专业图形领域及通用计算中,所有专业的2D、3D图像设计软件都对其支持,所以专业图形显卡都必需支持庞大的完整的OpenGL功能常见的游戏显卡只支持少部分OpenCL功能。
12、输出接口:
现在目前基本都是VGA,DVI,HDMI,DP接口。以前都是已VGA接口为主,随着技术的发展,现在反而更多的是用DVI和HDMI,一般实用对接口要求都不是很多,除非的是电竞用,和显示器搭配好接口类型就可以的了。
扩展资料
建议选购方法:
选时购请注意参考以下几点:
1、尽量选购有研发能力的大公司的产品,因为这些厂家决不会用不成熟的公板设计,会改进其线路布局和用料,使之更稳定,但往往产品的上市时间较晚。
2、尽量选购有自己制造工厂的公司的产品,至少在品管上有保证。
3、尽量选购主机板厂生产的显卡,因为他们一般都有很好的条件来测试主板和显卡的兼容性,而且主板厂商往往能很早拿到新的甚至还未正式公布的主板芯片,所以他们的显卡对未来的主板兼容性问题较少,且一但发生问题也容易解决。
4、有些小的做工方面,能反映出设计该产品的用心程度。如:采用风扇还是散热片,风扇或散热片同显示芯片之间的填充物是什么。不用说,用风扇散热,中间填充导热胶的做工一定比用双面胶毡上去的散热片要好很多。
5、千万要注意显卡的金手指部分,做工用料差别很大,从侧面看,做工好的显卡金手指镀得厚,有明显的突起。镀得好经反复插拔也不易驳落。
参考资料来源:百度百科——显卡参数
电脑的显卡的区别有哪些哦,能举列子说明一下吗?
区别:
1、集成显卡是将显示芯片、显存及其相关电路都集成在主板上,与其融为一体的元件;独立显卡是指将显示芯片、显存及其相关电路单独做在一块电路板上,自成一体而作为一块独立的板卡存在,它需占用主板的扩展插槽(ISA、PCI、AGP或PCI-E)。
2、集成显卡的显示效果与处理性能相对较弱,不能对显卡进行硬件升级;单独安装有显存,一般不占用系统内存,在技术上也较集成显卡先进得多,但性能肯定不差于集成显卡,容易进行显卡的硬件升级。
3、集成显卡是功耗低、发热量小、部分集成显卡的性能已经可以媲美入门级的独立显卡,所以不用花费额外的资金购买独立显卡。独立显卡系统功耗有所加大,发热量也较大,需额外花费购买显卡的资金,同时(特别是对笔记本电脑)占用更多空间。
4、独立显卡具备单独的显存,不占用系统内存,而且技术上领先于集成显卡,能够提供更好的显示效果和运行性能。
5、集成显卡功耗低,独立显卡功耗高,易发热。
扩展资料:
显卡作为电脑主机里的一个重要组成部分,是电脑进行数模信号转换的设备,承担输出显示图形的任务。显卡接在电脑主板上,它将电脑的数字信号转换成模拟信号让显示器显示出来,同时显卡还是有图像处理能力,可协助CPU工作,提高整体的运行速度。
对于从事专业图形设计的人来说显卡非常重要。 民用和军用显卡图形芯片供应商主要包括AMD(超微半导体)和Nvidia(英伟达)2家。现在的top500计算机,都包含显卡计算核心。在科学计算中,显卡被称为显示加速卡。
显卡说明的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于显卡说明书丢了、显卡说明的信息别忘了在本站进行查找喔。